Robust and Efficient Multifrontal Solver for Large Discretized PDEs

نویسنده

  • Jianlin Xia
چکیده

This paper presents a robust structured multifrontal factorization method for large symmetric positive definite sparse matrices arising from the discretization of partial differential equations (PDEs). For PDEs such as 2D and 3D elliptic equations, the method costs roughly O(n) and O(n4/3) flops, respectively. The algorithm takes advantage of a low-rank property in the direct factorization of some discretized matrices. We organize the factorization with a supernodal multifrontal method after the nested dissection ordering of the matrix. Dense intermediate matrices in the factorization are approximately factorized into hierarchically semiseparable (HSS) forms, so that a data-sparse Cholesky factor is computed and is guaranteed to exist, regardless of the accuracy of the approximation. We also use an idea of rank relaxation for HSS methods so as to achieve similar performance with flexible structures in broader types of PDE. Due to the structures and the rank relaxation, the performance of the method is relatively insensitive to parameters such as frequencies and sizes of discontinuities. Our method is also much simpler than similar structured multifrontal methods, and is more generally applicable (to PDEs on irregular meshes and to general sparse matrices as a black-box direct solver). The method also has the potential to work as a robust and effective preconditioner even if the low-rank property is insignificant. We demonstrate the efficiency and effectiveness of the method with several important PDEs. Various comparisons with other similar methods are given.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Distributed-Memory Randomized Structured Multifrontal Method for Sparse Direct Solutions

We design a distributed-memory randomized structured multifrontal solver for large sparse matrices. Two layers of hierarchical tree parallelism are used. A sequence of innovative parallel methods are developed for randomized structured frontal matrix operations, structured update matrix computation, skinny extend-add operation, selected entry extraction from structured matrices, etc. Several st...

متن کامل

Robust Structured Multifrontal Factorization and Preconditioning for Discretized Pdes

We present an approximate structured factorization method which is efficient, robust, and also relatively insensitive to ill conditioning, high frequencies, or wavenumbers for some discretized PDEs. Given a sparse symmetric positive definite discretized matrix A, we compute a structured approximate factorization A ≈ LLT with a desired accuracy, where L is lower triangular and data sparse. This ...

متن کامل

Superfast Multifrontal Method for Large Structured Linear Systems of Equations

In this paper we develop a fast direct solver for large discretized linear systems using the supernodal multifrontal method together with low-rank approximations. For linear systems arising from certain partial differential equations such as elliptic equations, during the Gaussian elimination of the matrices with proper ordering, the fill-in has a low-rank property: all off-diagonal blocks have...

متن کامل

Block Low-Rank (BLR) approximations to improve multifrontal sparse solvers

Matrices coming from elliptic Partial Differential Equations (PDEs) have been shown to have a lowrank property: well defined off-diagonal blocks of their Schur complements can be approximated by low-rank products. In the multifrontal context, this can be exploited within the fronts in order to obtain a substantial reduction of the memory requirement and an efficient way to perform many of the b...

متن کامل

Superfast Multifrontal Method for Structured Linear Systems of Equations

In this paper we develop a fast direct solver for discretized linear systems using the multifrontal method together with low-rank approximations. For linear systems arising from certain partial differential equations such as elliptic equations we discover that during the Gaussian elimination of the matrices with proper ordering, the fill-in has a low-rank property: all off-diagonal blocks have ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2012